How Logging Your Dives Can Make You a Better Diver
Here are a few items you can include in your logbook to help you stay organized and honest, track progress, and work on self-improvement as a diver.
Here are a few items you can include in your logbook to help you stay organized and honest, track progress, and work on self-improvement as a diver.
In reality, Trimix is a risk management breathing mixture utilized by divers typically seeking to offset the consequences of diving normoxic air or nitrox mixtures at a planned diving depth by replacing much of the nitrogen and some of the oxygen with more benign inert gases like helium.
Sport and technical diving have differences, such as going deeper and staying longer. Most people who are curious or want to technical dive shouldn’t be discouraged by bad attitudes.
Knowing that we are going to have some sort of equipment malfunctions, environmental/navigation emergencies, and will just simply make mistakes at some point in our technical diving careers, how do we avoid becoming a diving fatality statistic?
by Jon Kieren:
Technical diving is inherently dangerous. Diving in environments that restrict your access to the surface requires your foundational scuba diving skills to be second nature so when an emergency arises you can focus on solving the problem and aborting the dive. Whether you are just starting your TDI Intro to Tech Course, or have over 200 Advanced Trimix dives, these six essential skills should be practiced on every dive.
While this is not intended to be an all-inclusive list of skills to be practiced for technical diving, these six skills are applicable to most technical diving scenarios, and can be easily practiced on just about every dive. What other skills do you like to practice regularly?
Why do divers do stupid things? Well the short answer is because they are stupid. Now I know that the majority of the readers of this article are going to be divers and it’s not usually a good idea to start off by insulting your audience but bear with me.
By Jon Kieren
There are many factors that need to be considered when choosing decompression gasses for a dive. The dive profile, logistics, environment/site conditions, and personal preference all come into play; how do these factors affect our decision? First, we need to take a brief look at why we use different gasses for decompression to begin with, and then how the factors previously listed affect our gas choices. For big dives with extensive decompression obligations, it’s often a balancing act between oxygen exposure and off gassing.
Why switch gas anyway? This takes a brief lesson in decompression theory to explain; we’ll focus mainly on the off gassing portion of the dive. The rate of off gassing is related to the partial pressure within the tissues of the body and the partial pressure of the gas being breathed. When the partial pressure of the inert gas (mainly nitrogen and helium) in the lungs (the gas we are breathing) is LOWER than the partial pressure of the inert gas absorbed in our tissues, the gas will move from the area of high pressure (our tissues) to the area of low pressure (our lungs) and be expelled when we exhale.
There are two ways we can reduce the partial pressure of the inert gas in our lungs. First, is by ascending and letting Boyle’s law take over. As the gas expands as we ascend due to reduced ambient pressure, the partial pressure of the gas drops. This works but is not the most effective method. If we ascend too far or too fast and the ambient pressure decreases too rapidly, bubbles can form causing decompression sickness. The second method of reducing the partial pressure of the inert gas in our lungs is to reduce the fraction of the inert gas in our breathing mixture. In order to reduce the fraction of inert gas in the mix, we increase the fraction of oxygen. By switching to an oxygen rich gas on the ascent, we reduce the partial pressure of the inert gas in our lungs and increase the rate and efficiency of off gassing. So, more oxygen=less inert gas=faster/more efficient deco. Got it?
Okay, so if a higher fraction of oxygen is better for decompression, why don’t we just use 100% oxygen for the entire ascent? It would sure reduce our decompression times by a significant amount, wouldn’t it? Well, unfortunately we have to be cautious of the pesky oxygen free radicals caused by breathing high partial pressures of oxygen. If these oxygen free radicals are left to cause damage faster than the body can repair it, oxygen toxicity can become a serious concern. In short, the higher the oxygen content in the breathing gas, the shallower it must be breathed. As an example; for sport and technical diving applications, the maximum operating depth of oxygen is 6 metres/20 feet; and the maximum operating depth of 50% nitrox is 21 metres/70 feet. Here’s where we begin our balancing act.
We now need to consider the other factors that will affect our gas choice. First of all is logistics. What gasses are actually available? Many technical dive facilities have their decompression gasses pre-mixed, so you may be limited to what they have available or are willing to blend (gas blending can be a time consuming process). Also, there are many places in the world where 100% oxygen is not available, or can only be filled to roughly 150 bar/ 2000psi, depending on the fill station’s equipment. Once you know what your options are, you need to look a bit closer at the environment you’ll be diving in and how you will conduct your last decompression stop.
Many divers will vary the depth they plan to conduct their final decompression stop based on the environment they will be diving in. In a perfect world, we would always conduct our last stop at 3 metres/10 feet. Unfortunately, this is not a perfect world. Rough seas and overhead environments may make it difficult or impossible to conduct your last stop at 10 ft, so it may need to be conducted a bit deeper at 6 metres/20 feet. Conducting this last stop on 100% oxygen could now be problematic as you will be exposed to a much higher partial pressure of oxygen for the duration of the final decompression stop. Add rough seas to this in open water, and it could be very difficult to remain at a safe depth on oxygen. This is an instance where reducing the oxygen content may be wise. While a lower fraction of oxygen will not be quite as effective as a decompression gas on this final stop, it can significantly reduce the diver’s oxygen exposure. If you are making multiple gas switches in order to maximize the partial pressure gradient for the entire ascent, you will also need to look at the environment to decide what gasses to carry. A good example of this would be a cave dive. If you were planning your dive to switch to 50% at 21 metres/70 feet, but you know that there is a restriction in the cave at 21 metres/70 feet making it difficult to conduct a proper gas switch, you have a few options. First, would be carry the same gas, but decide to switch to it at a shallower depth where there is not a restriction. This would work fine, but would not be as effective for your decompression. You could also choose to bring a different decompression gas. A leaner nitrox mix could be switched to a bit deeper, but would not be as effective for the shallower stops. A richer nitrox mix would be more effective in the shallower stops, but you would not be getting the advantages of a decompression gas until later in the decompression schedule. Using desktop/mobile decompression software makes running these alternative options quick and easy so you can see immediately how your choice will affect your decompression plan.
After looking at all of the scenarios above, sometimes it just comes down to personal/team preference. Many divers and dive teams choose to use a standardized set of decompression gasses. This policy helps keep things simple and consistent. If a diver always carries 50% and oxygen for decompression, then they are always making gas switches at 21 metres/ 70 feet and 6 metres/20 feet. This standardized method streamlines the dive planning considerably, is consistent, and works well for many applications.
While this is not a complete discussion on decompression gas planning, it’s a good example as to what type of considerations we need to take into account when choosing our deco gasses. These points, along with others, are covered in depth in the TDI Decompression Procedures, Extended Range, Trimix, and Advanced Trimix courses and course materials. For more information on these courses, please visit TDI courses section
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlySettingsWhen you visit any website, it may store or retrieve information mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information stored in a cookie does not usually directly identify you, but it can give you a more personalized web experience.
Because we respect your right to privacy, you can choose not to allow cookies.
When you visit this Website, you can browse the Website and access information without revealing your identity. We do use cookies to store essential information which is necessary for the Website to function and cannot be switched off in our systems. A cookie is a small amount of data that is transferred to your browser by our web server and can only be read by the server that gave it to you. Most browsers are initially set to accept cookies. You can set your browser to notify you when you receive a cookie, giving you the chance to decide whether to accept it or not. If you choose not to accept cookies, you will encounter issues with the Website and the Website will continue to prompt you to accept/refuse cookies when revisiting the Website site. We fully respect it if you want to refuse cookies, and you are free to opt out or in at any time. If you refuse cookies, we will remove all the cookies associated with our Website.
As a reminder, your choice will only apply to the browser and device you are currently using to visit our Website. It will not apply to a different browser or device. If you visit our website using a different browser or device, you will need to exercise your choice for each browser or device again.
Essential Website cookies are strictly necessary to provide you with services available through our website and to use some of its features. Because these cookies are strictly necessary to deliver the Website, refusing them will have impact on how our site functions. Some of these cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. All information these cookies collect is aggregated and therefore anonymous.
You can read about our cookies and privacy settings in detail on our Privacy Policy Page.
Privacy PolicyYour session is about to expire. Would you like to extend the session or logout?